
netflix-conductor-sample

Project Setup
1. clone the repository

git clone git@github.com:my1795/netflix-conductor-sample.git

2. change directory to project

cd netflix-conductor-sample

3. Change directory to compose file and run docker compose

cd docker-compose

docker compose up

UI access
visit http://localhost:5000 for netflix conductor UI

visit http://localhost:8080 for netflix conductor server swagger UI

Workers Implementation
Workers are implemented under workers director. It is automatically build and run within docker compose

file. Please evaluate inside the project to see how they are implemented

DEMONSTRATION

Preparation

Explanation

First, workerflow definitions must be created against the conductor server. The workflow definitions are

under workflow directory. summarize_population workflow includes fork join task and HTTP task

pizza_order workflow and pizza_prepare workflow are samples to use events

Workflow definition creation

Run in project root

curl -X 'POST' \

'http://localhost:8080/api/metadata/workflow' \

-H 'accept: */*' \

-H 'Content-Type: application/json' \

-d @workflow/summarize_population.json

http://localhost:5000/
http://localhost:8080/

curl -X 'POST' \

'http://localhost:8080/api/metadata/workflow' \

-H 'accept: */*' \

-H 'Content-Type: application/json' \

-d @workflow/pizza_order.json

curl -X 'POST' \

'http://localhost:8080/api/metadata/workflow' \

-H 'accept: */*' \

-H 'Content-Type: application/json' \

-d @workflow/pizza_prepare.json

Case 1: Summarize Population Workflow

 This workflow

makes a http request to a public API by a HTTP task defined with name of get_population_data the

response then split into two SIMPLE tasks to summarize information. The output of the workflow shows

summary of the beginning HTTP request. Summary workers can be found under workers java project.

! This workflow does not have a manual input

To start the workflow run the following command:

curl -X 'POST' \ 'http://localhost:8080/api/workflow/summarize_population?priority=0' \

-H 'accept: text/plain' \ -H 'Content-Type: application/json' \ -d '{}'

Alternatively you can start workflow by using swagger UI at http://localhost:8080/swagger-

ui/index.html#/workflow-resource/startWorkflow_1 on your browser or Workbench section in conductor UI at

http://localhost:5000

Monitoring the workflow... You can visit your browser at http://localhost:5000 for conductor UI Execution

section in the UI shows workflow executions

Case 2: Pizza Delivery Workflows By Events

http://localhost:8080/swagger-ui/index.html#/workflow-resource/startWorkflow_1
http://localhost:5000/
http://localhost:5000/

pizza_order takes an input as pizzaName then waits for notify_restaurant_event to notify restaurant to

preapre pizza. If the event is handled by pushing the event to event endpoint it starts another workflow by

event definition.The other workflow triggered by is pizza_prepare. pizza_prepare workflow waits for an

event from restaurant client to complete its duty.The event is pizza_ready_event and this event completes a

WAIT task in the first workflow. Finally a SIMPLE task in pizza_order continues to execute to assign the order

to the courier.

STEPS:

1. Start pizza order workflow: curl -X 'POST' \

'http://localhost:8080/api/workflow/pizza_order?priority=0' \ -H 'accept:

text/plain' \ -H 'Content-Type: application/json' \ -d '{ "pizzaName":

"PEPPERONI" }'

2. Check Conductor UI. Verify it waits for event:

3. Send pizza order event handler to trigger restaurant: curl -X 'POST' \

'http://localhost:8080/api/event' \ -H 'accept: */*' \ -H 'Content-Type:

application/json' \ -d '{ "name": "pizza_order_event", "event":

"conductor:pizza_order:notify_restaurant_event_ref", "actions": [{ "action":

"start_workflow", "start_workflow": { "name": "pizza_prepare", "input": {

"sourceWorkflowId": "${workflowInstanceId}" } } }], "active": true }'

4. Send pizza ready event handler to signal pizza is ready by restaurant:

curl -X 'POST' \ 'http://localhost:8080/api/event' \ -H 'accept: */*' \ -H

'Content-Type: application/json' \ -d '{ "name": "pizza_ready_event", "event":

"conductor:pizza_prepare:complete_pizza_prepare_ref", "actions": [{ "action":

"complete_task", "complete_task": { "workflowId": "${sourceWorkflowId}",

"taskRefName": "restaurant_pizza_ready_signal_ref" } }], "active": true }'

5. Verify Workflow is completed successfully and output

IMAGE BUILD PROCESS
Note that, I have got successful builds for both platforms on windows machine but on apple silicon

conductor-server amd64 build hangs

1. cloned the repo from https://github.com/my1795/conductor.git and checkout the main branch

2. Generated conductor-server build

cd docker

docker buildx build --progress=plain --no-cache --push --platform

linux/arm64,linux/amd64 --tag mustafasdocker1/conductor-server:v3.13.2 -f

server/Dockerfile ../

3. Generated conductor-ui build from project root

docker buildx build --progress=plain --no-cache --push --platform

linux/arm64,linux/amd64 --tag mustafasdocker1/conductor-ui:v3.13.2 -f

docker/ui/Dockerfile .

REFERENCES
https://conductor.netflix.com/reference-docs/fork-task.html

https://conductor.netflix.com/how-tos/Workflows/starting-workflows.html

https://conductor.netflix.com/how-tos/Workers/build-a-java-task-worker.html

https://conductor.netflix.com/reference-docs/event-task.html

https://conductor.netflix.com/reference-docs/http-task.html

https://github.com/my1795/conductor.git
https://conductor.netflix.com/reference-docs/fork-task.html
https://conductor.netflix.com/how-tos/Workflows/starting-workflows.html
https://conductor.netflix.com/how-tos/Workers/build-a-java-task-worker.html
https://conductor.netflix.com/reference-docs/event-task.html
https://conductor.netflix.com/reference-docs/http-task.html

